
Software
Orchestration &
Resource Scheduling
Summary Report

Eclipse SDV Community Days,
March 29 and 30
Lisbon

SW Orchestration & Resource Scheduling
The Team

Aymeric Rateau (Toyota),
Badii Ennouri (badii.ennouri@gmail.com)

Daniel Krippner (ETAS GmbH)
Fergus Duncan (CapGemini)
Filipe Prezado (Microsoft),

Holger Dormann (Elektrobit),
Kai Hudalla (Robert Bosch GmbH),

Liviu Tiganus (Microsoft),
Sergey Markelov (Microsoft),

Sven Erik Jeroschewski (Robert Bosch GmbH),
Thilo Schmitt (Mercedes-Benz Tech Innovation),

Please add yourself to
the list.

mailto:badii.ennouri@gmail.com

SW Orchestration & Resource Scheduling
Our Goal

Define one a concrete software architecture that can be implemented on
an in-vehicle computer which supports the use cases described below.

SW Orchestration & Resource Scheduling
Some Definitions

Software Orchestration and Resource Scheduling refers to a set of software components that work together to
support deployment and management of In-Vehicle Resources.

In-Vehicle Resources consists of one or more software components that need to be installed and managed in the
target in-vehicle runtime environment.

Software components can be applications, containers, firmware. Software components often also include (or might
require) configuration data to adapt the software components to the target in-vehicle runtime environment.

Containers are a form of operating system virtualization. A single container is a way of encapsulating a set of
software components. The set of software components is installed in a Container and is removed with the
Container. This does not "pollute" the host OS. Container A can have a software component of a conflicting version
or nature that is in Container B, but since all data and software components are encapsulated in Container A and
Container B respectively, that does not manifest itself as a problem on the host OS.

Control Plane - Provides a management layer that enables deployment, update and deletion of in-vehicle resources.
It ensures that every in-vehicle resource is kept in the desired state. Makes global decisions as well responds to
events.

SW Orchestration & Resource Scheduling
Some Principles (and constraints just to start)

Platform and Protocol Neutral
Focus on the software architecture and try to be agnostic of concrete operating system and hardware platform. In
particular, we should not assume to run on bare metal or a virtual machine managed on top of a hypervisor as, for example,
proposed in the SOAFEE project.

Extensible architecture supporting a broad range of devices, hardware, and software components
Start with in-vehicle computer is an x86_64 or arm64 based system with at least 8GB of RAM running a Linux kernel based
operating system (non-RT), e.g. Automotive Grade Linux (AGL), Debian, custom Yocto-based etc.

1.
Open Source
The software components being used are required to be developed within the context of (existing?) open source projects.

1.
Do not re-invent the wheel.
We should strive for (re-)using, aligning and extending existing software wherever reasonably possible.
Highlight EB, Kanto and Muto projects

Should be consumable (quality requirements) by the OEM’s, Tier1,s
And potential reference testing & validation principles from Johannes workstream
(make this codebase an example of “automotive-grade” code quality to be adopted and consumed)

SW Orchestration & Resource Scheduling
Use Cases

UC1 - Deploy and Manage non-safety critical application

Automate deployment of a (multi-container/-artifact) application into the in-vehicle computer, schedule, manage and run it.

•

UC2 - Deploy and Manage mixed-criticality application components to multiple targets

Automate deployment of an application that consists of artifacts of mixed criticality (QM & ASIL-B...) that need to be installed,
managed and run in (a containerization platform) dedicated platforms/controllers.

•

UC3 - Dynamically deploy application components to multiple targets (wishlist)

Dynamic deployment of application containers into the containerization platform across the different controllers/partitions
based on resource availability.

•

UC4 Download and Install application components to multiple targets (wishlist)

Download and manage the installation of the application components (inc. configuration and dependencies) across the
multiple targets within the vehicle E/E platform - the automotive application components are generally distributed over
multiple targets within the vehicle. For example, an embedded control unit (ECU) that provides safety-critical functionality
needs to have its firmware updated and/or an AUTOSAR application needs to be deployed using AUTOSAR Update and
Configuration Management (UCM).

SW Orchestration & Resource Scheduling
Other related Projects

• COVESA - in particular, the Vehicle Signal Specification might be a candidate for vehicle abstraction.
• Aos - Edge Orchestration Platform
• Rancher/k3s - Kubernetes implementation for small devices
• Flatpak - Packaging and distributing applications for Linux
• CNAB: Cloud Native Application Bundles -Cloud Native Application Bundle
• Autoware Open AD Kit promises to accelerate the development of optimized hardware and software solutions for autonomous

driving
• SOAFEE

• Promote overall vision (as laid out in this presentation)
• Push subgroups to address some implementation aspects
• Mixed Criticality portability
• Secure standard device assignment for type 1 hypervisors (via Francois)
• Freedom of interference from secure firmware

• Linaro
• Trusted sensors (sensor signing component from different entity than the sensor business logic) => link to confidential

compute
• For Use Case 4:

• AUTOSAR (UCM)
• Uptane - An open and secure software update framework design which protects software delivered over-the-air to automobile

electronic control units (ECUs)
• TOSCA - Topology and Orchestration Specification for Cloud Applications

@Daniel, @Holder - Highlight also the
identified challenges related to run k8s
in existing in-vehicle compute capacity

https://covesa.global/
https://aoscloud.io/
https://www.flatpak.org/
https://cnab.io/
https://www.autoware.org/autoware-open-ad-kit
https://www.soafee.io/
https://www.linaro.org/
https://www.autosar.org/search?tx_solr%5Bq%5D=sws+UCM
https://uptane.github.io/
https://github.com/osism/awesome-tosca

SW Orchestration & Resource Scheduling
Requirements identified (not exhaustive)

MUST HAVE support for managing in-vehicle compute as Pets (and not Cattle) (refer to Cattles vs Pets terminology/history)
SHOULD HAVE support for software component deployment ordering across in-vehicle target runtimes
MUST HAVE support for software component rollback capabilities/features
COULD HAVE support for deterministic application start-up ordering
COULD HAVE support for failover strategies
WON'T HAVE support for horizontal scaleout (as is not an immediate concern)
MUST/SHOULD/COULD/WON'T support updating operating system and/or firmware of ECUs.
MUST/SHOULD/COULD/WON'T support updating autosar classic applications
MUST/SHOULD/COULD/WON'T support for Open Container Initiative
MUST/SHOULD/COULD/WON'T support for Certified Kubernetes Software Conformance
MUST/SHOULD/COULD/WON'T support for integration with OTA/FOTA software
MUST/SHOULD/COULD/WON'T be a replacement for OTA/FOTA software
MUST/SHOULD/COULD/WON'T support for end-to-end Observability using OpenTelemetry
MUST/SHOULD/COULD/WON'T support for computational nodes like ECU's/MCU’s
MUST HAVE support for ordering of applications at startup
COULD HAVE support for rollback
COULD HAVE self healing capabilities
COULD HAVE self governing capabilities
MUST HAVE support for offline/online network connectivity
MUST HAVE support for offline/online hardware internal state

To be Completed

SW Orchestration & Resource Scheduling
Community Call for Action

•
• Contribute

• review requirements and provide feedback
• Use the Assessment as a guiding tool

•
• Can we align implementation of these requirements

across projects? Eg: Kanto, Muto, … => unify
developer base

•
• Outlook

• Rust/compiler certification => make a
ready-for-cert showcase out of Orchestrator
project?

• Collaboration potential with eg Ferrous, Exida,
Codethink, etc

•

Assessment Questionnaire (Draft) for Eclipse SDV Projects · Wiki · Eclipse
Working Groups / SDV WG / sdv-technical-alignment / sdv-technical-topics /

vehicle-SW-orchestration-sdv-topic · GitLab

@Daniel, @Kai, @Holder, we should
reach out to Kanto team and Naci to

confirm this statement proposal.

https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects
https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects
https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects

