Software
Orchestration &
Resource Scheduling
Summary Report

Eclipse SDV Community Days,
March 29 and 30

Lisbon

=DV

Eclipse Software Defined Vehicle

(,K,é__——f\

SW Orchestration & Resource Scheduling
The Team

Please add yourself to
the list.

Fergus Duncan (CapGemini)
Filipe Prezado (Microsoft),
Holger Dormann (Elektrobit),

Kai Hudalla (Robert Bosch GmbH),

Liviu Tiganus (Microsoft),

Sergey Markelov (Microsoft),

Sven Erik Jeroschewski (Robert Bosch GmbH),
Thilo Schmitt (Mercedes-Benz Tech Innovation),

mailto:badii.ennouri@gmail.com

SW Orchestration & Resource Scheduling
Our Goal

Define erre a concrete software architecture that can be implemented on
an in-vehicle computer which supports the use cases described below.

SW Orchestration & Resource Scheduling

Some Definitions

ts that work together to

alled and managed in the

Software components can be applications, containers, firmware. Software components often also include (or might
require) configuration data to adapt the software components to the target in-vehicle runtime environment.

Containers are a form of operating system virtualization. A single container is a way of encapsulating a set of
software components. The set of software components is installed in a Container and is removed with the
Container. This does not "pollute" the host OS. Container A can have a software component of a conflicting version
or nature that is in Container B, but since all data and software components are encapsulated in Container A and
Container B respectively, that does not manifest itself as a problem on the host OS.

Control Plane - Provides a management layer that enables deployment, update and deletion of in-vehicle resources.
It ensures that every in-vehicle resource is kept in the desired state. Makes global decisions as well responds to
events.

SW Orchestration & Resource Scheduling

Some Principles (and constraints just to start)

Iware platform. In
) hypervisor as, for example,

: : ents

Start with in-vehicle computer is an x86_64 or arm64 based system with at least 8GB of RAM running a Linux kernel based
operating system (non-RT), e.g. Automotive Grade Linux (AGL), Debian, custom Yocto-based etc.
1.

Open Source

The software components being used are required to be developed within the context of (existing?) open source projects.
1.
Do not re-invent the wheel.
We should strive for (re-)using, aligning and extending existing software wherever reasonably possible.
Highlight EB, Kanto and Muto projects

Should be consumable (quality requirements) by the OEM’s, Tierl,s
And potential reference testing & validation principles from Johannes workstream
(make this codebase an example of “automotive-grade” code quality to be adopted and consumed)

SW Orchestration & Resource Scheduling

Use Cases

chedule, manage and run it.

-B...) that need to be installed,

managed and run in (a containerization platform) dedicated platforms/controllers.

UC3 - Dynamically deploy application components to multiple targets (wishlist)
Dynamic deployment of application containers into the containerization platform across the different controllers/partitions
based on resource availability.

UC4 Download and Install application components to multiple targets (wishlist)

Download and manage the installation of the application components (inc. configuration and dependencies) across the
multiple targets within the vehicle E/E platform - the automotive application components are generally distributed over
multiple targets within the vehicle. For example, an embedded control unit (ECU) that provides safety-critical functionality
needs to have its firmware updated and/or an AUTOSAR application needs to be deployed using AUTOSAR Update and
Configuration Management (UCM).

SW Orchestration & Resource Scheduling
Other related Projects

ftware solutions for autonomous

J \J \J w C G IAY BAVAY S -

* Push subgroups to address some implementa @Daniel, @Holder - Highlight also the
« Mixed Criticality portability ¢

» Secure standard device assignment for type 1 '_dent.'f'.ed c.hallen.ges related to run k_85
- Freedom of interference from secure firmwarefSLR LR RV TSR eoT gl oV {=RexT o [el]3Y

« Linaro
» Trusted sensors (sensor signing component from different entity than the sensor business logic) => link to confidential
compute

 For Use Case 4:
« AUTOSAR (UCM)

» Uptane - An open and secure software update framework design which protects software delivered over-the-air to automobile
electronic control units (ECUs)

+ TOSCA - Topology and Orchestration Specification for Cloud Applications

https://covesa.global/
https://aoscloud.io/
https://www.flatpak.org/
https://cnab.io/
https://www.autoware.org/autoware-open-ad-kit
https://www.soafee.io/
https://www.linaro.org/
https://www.autosar.org/search?tx_solr%5Bq%5D=sws+UCM
https://uptane.github.io/
https://github.com/osism/awesome-tosca

SW Orchestration & Resource Scheduling

Requirements identified (not exhaustive)

Pets terminology/history)
imes

MUST/SHOULD/COULD/WON'T support updating operating system and/or firmware of ECUs.
MUST/SHOULD/COULD/WON'T support updating autosar classic applications
MUST/SHOULD/COULD/WON'T support for Open Container Initiative
MUST/SHOULD/COULD/WON'T support for Certified Kubernetes Software Conformance
MUST/SHOULD/COULD/WON'T support for integration with OTA/FOTA software
MUST/SHOULD/COULD/WON'T be a replacement for OTA/FOTA software
MUST/SHOULD/COULD/WON'T support for end-to-end Observability using OpenTelemetry
MUST/SHOULD/COULD/WON'T support for computational nodes like ECU's/MCU’s

MUST HAVE support for ordering of applications at startup

COULD HAVE support for rollback

COULD HAVE self healing capabilities

COULD HAVE self governing capabilities

MUST HAVE support for offline/online network connectivity

MUST HAVE support for offline/online hardware internal state

/;’:J—"
—

To be Completed S =y

Eclipse Software Defined Vehicle

SW Orchestration & Resource Scheduling
Community Call for Action

Assessment Questionnaire (Draft) for Eclipse SDV Projects
Control Plane
s are most important to create an experience of easy deployments?

ire integration of in-vehicle control plane with a cloud control pl e for management?
get memory and CPU footprint / target specs for

e (ie, CAN, LIN Bus)?
[]

* Can we align implementation of these requirements @Dan'el @Ka' @H°|de" we should
across projects? Eg: Kanto, Muto, ... => unify TEREND GUC T SEmiD ealm el e e
developer base

confirm this statement proposal.

requi edy amic predictio ofappl cation resource requirements ?

« Doyou
° e Do you require application load balancing and s /ppl cation discovery?
* Do you requi dy amic allocation of a ppl catiol single node? and multi node?
* Do you require applicatio caling?
i O ut I O O k Package/Configuration formats
. LN ol . * What application package and formats do you support or would like to be supported?
* Rust/compiler certification => make a i e "
ready-for-cert showcase out of Orchestrator Assessment Questionnaire (Draft) for Eclipse SDV Projects - Wiki - Eclipse
. 5 Working Groups / SDV WG / sdv-technical-alignment / sdv-technical-topics /
prOjeCt ! vehicle-SW-orchestration-sdv-topic - GitLab

* Collaboration potential with eg Ferrous, Exida,
Codethink, etc —

SDvV
Eclipse Software Defined Vehicle

https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects
https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects
https://gitlab.eclipse.org/eclipse-wg/sdv-wg/sdv-technical-alignment/sdv-technical-topics/vehicle-sw-orchestration-sdv-topic/-/wikis/Assessment-Questionnaire-(Draft)-for-Eclipse-SDV-Projects

