Eclipse Heimlig

A firmware for Hardware Security Modules (HSMs) written in Rust

Norbert Fabritius

29/03/2023
Security Challenges in Modern Cars

“A single modern luxury vehicle now can integrate as many as 150 ECUs.”

eeNews Europe, 2019

Today’s cars are large internet-connected computer networks on wheels. To keep these networks secure, different cryptographic services is required:

1) Secure transmission of data
2) Secure storage of data
3) Secure generation of key material
What is a Hardware Security Module (HSM)?

An HSM is a dedicated hardware component that provides cryptographic services to other components:

- Secure generation and storage of cryptographic keys.
- Hardware-accelerated and protected cryptographic operations: Encryption, decryption, signing and verification of data.
- An HSM never reveals private key material
 - Even if all other systems are compromised.
 - It might even destroy keys if a physical attack is detected.

The HSM hardware only provides low-level cryptographic operations. The HSM firmware uses these to build a ready-to-use component. A traditional operating system (e.g. FreeRTOS, Embedded Linux) is not required.
Why another HSM firmware?

- HSMs are not a new idea
- Most are written in C or C++
 - Insecure **memory handling**: Buffer overflows, access to invalid memory
 - Little protection from **data races**: Multiple contexts accessing the same memory at the same time
 - Error-prone **complexity**

Never ending source of **vulnerabilities**
Why another HSM firmware?

“It will demonstrate several attack paths [...] full control of the HSM. [...] retrieving all HSM secrets remotely [...] persistent backdoor that survives a firmware update.”
What is Rust?

Rust is an emerging programming language.

1) **Reliable**
 Strong memory safety and concurrency guarantees
 → Ideal for **security** components

2) **Efficient**
 Compile to native binaries
 Little overhead ("Pay for what you use")
 → Required for **embedded** components

3) **Productive**
 Provide modern tools and ready-to-use libraries
What is Eclipse Heimlig?

Eclipse Heimlig is an **HSM firmware** written in **Rust**.

Generic Core
- Accepts and schedules incoming crypto. requests
- Manages keys and forwards requests to workers
- Routes responses back to clients

Workers
- Modules that perform cryptographic operations
- Portable Software workers for common cryptographic algorithms are provided
- Custom workers that leverage hardware-specific functions can be added by the integrator
- Workers can be "**mixed and matched**"
Current Status

- Heimlig is in the prototyping stage
- Runs on STMicroelectronics discovery board
 - ARM Cortex-M7 processor
 - Uses hardware random number generator
- Runs on Linux for development
- Implements common cryptographic algorithms as software workers:
 - Encryption: AES-CBC/-GCM/-CCM, Chacha20Poly1305
 - Hashing: SHA-2, SHA-3, BLAKE3
 - Signing, verifying and key exchange: ECDSA, ECDH
 - Random number generation: ChaCha20 seeded by hardware
Next Steps

Publish code on Eclipse repository. Contributions, reviews and ideas are very welcome ❤️

Research and implement:
• Efficient and safe shared memory interface
• Parallelize worker operations
 – Using Rust’s native async mechanism requires a hardware-specific executor
 – Simpler approaches possible
• Secure software update and JTAG unlocking in the field
Thank You

Norbert Fabritius
norbert.fabritius@esrlabs.com