
Stefan Marksteiner

AVL List GmbH (Headquarters) Public

Eclipse SDV Community Day
March 19, 2024, Graz, Austria

OpenDuT – Test Definition Language
and Test Execution Architecture

Stefan Marksteiner

Public

Test Abstraction and
Execution Layers

ALIA - Agnostic Language for Implementing Attacks

Stefan Marksteiner | | 19 März 2024 |/ 3Public

Test Reuse on Different Systems

Stefan Marksteiner | | 19 März 2024 |/ 4Public

Abstracting Test Patterns

 The purpose is portability through
generalization

 Test patterns are system-agnostic test
building blocks that form a scenario [1]

 Scenarios are concretized for specific
SUTs as test cases (consisting of single
scripts)

 The test scenarios are stored in an own
developed attack description domain-
specific language (ALIA) [2]

[2] S. Marksteiner et al., “A Process to Facilitate Automated Automotive Cybersecurity Testing,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC Spring), New York, NY, USA: IEEE, 2021.

[3] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An Agnostic Domain Specific Language for Implementing Attacks in an Automotive Use Case,” in The 16th International Conference on
Availability, Reliability and Security, in ARES 2021. New York, NY, USA: Association for Computing Machinery, Aug. 2021, pp. 1–9. doi: 10.1145/3465481.3470070.

https://doi.org/10.1145/3465481.3470070

Stefan Marksteiner | | 19 März 2024 |/ 5Public

Current Execution Architecture

Attack
Execution

Engine

Generic Test
(DSL)

External
Scripts

Security
Requirements

External Interfaces

Specific Test
(JSON)

Configs for
Device under

Test
(DuT)

Test
Result/Report

Stefan Marksteiner | | 19 März 2024 |/ 6Public

OpenDuT Execution Architecture

Public

A DSL for Cyber Security
Testing

ALIA - Agnostic Language for Implementing Attacks

Stefan Marksteiner | | 19 März 2024 |/ 8Public

Example: UDS Session Scan

PreConditions:

Actions:
setIFDOWN : execute(tool: "ip", params:["link", "set", "can0", "down"])

consetIFDownfigureIF: execute(tool:"ip", params:["link", "set", "can0", "type", "can",
"bitrate", "500000"])

setIFUP: execute(tool:ip", params:["link", "set", "can0", "up"])

UDSSessionScan: execute(tool:"python3", params:["/home/kali/CAN_tools/sessionscan.py", "can0",
"714", "7EE", "/home/kali/CAN_tools/sessionoutput.txt"])

PrintSessionOutput: execute(tool:"cat", params:["/home/kali/CAN_tools/sessionoutput.txt "])

PostConditons:

Stefan Marksteiner | | 19 März 2024 |/ 9Public

Actions

• Implement the steps of a test that are
executed sequentially (or in parallel)

• Consist of an identifier and an execute
function

• Identifiers can be used in later actions
to reference a previous result

• A function contains specific params
that are used to parametrize the used
tool

• A function executes a single tool with
specified parameters

• Comments with „#“ or „//“

Stefan Marksteiner | | 19 März 2024 |/ 10Public

Flow Control

Conditionals:
 if(<conditon>)

 <action>
elseif(<conditon>)
 <action>
else
 <action>
endif

Loops:
 while(<condition>)

<action>
 endwhile

Stefan Marksteiner | | 19 März 2024 |/ 11Public

Example Output
• The output of the DSL-Script is parsed to a JSON Object
• This object is sent to the Execution Engine on the Attackbox for execution

{
 "name": „UDSSessionScan.json",
 "preconditions":[],
 "actions":[
 {"identifier":"setIFDown", "result":"setIFDown", "DSLStep":"setIFDown: execute(tool: \"ip\", params:[\"link\", \"set\",
\"{canIF}\",\"down\"])" , "commands":[{"name":"setIFDown", "tool": "ip", "parameters":["link", "set", "can0", "down"]}]},
 {"identifier":"configureIF", "result":"configureIF", "DSLStep":"configureIF: execute(tool:\"ip", params:[\"link\", \"set\",
\"can0\", \"type\", \"can\", \"bitrate\", \"500000\"])" , "commands":[{"name":"configureIF", "tool":"ip", "parameters":["link", "set",
"can0", "type", "can", "bitrate", "500000"]}]},
 {"identifier":"setIFUP", "result":"setIFUP", "DSLStep":"setIFUP: execute(tool:\"ip", params:[\"link\", \"set\", \"can0\",
\"up\"])" , "commands":[{"name":"setIFUP", "tool":"ip", "parameters":["link", "set", "can0", "up"]}]},
 {"identifier":"UDSSessionScan", "result":"UDSSessionScan", "DSLStep":"UDSSessionScan: execute(tool:\"python3\",
params:[\"/home/kali/CAN_tools/sessionscan.py\",\"can0\",\"714\",\"7EE\",\"/file.txt\"])" , "commands":[{
 "name":"UDSSessionScan", "tool":"python3"
 , "parameters":["/home/kali/CAN_tools/sessionscan.py", "can0", "714", "7EE", "file.txt"]}]},
 {"identifier":"PrintSessionOutput", "result":"PrintSessionOutput", "DSLStep":"PrintSessionOutput: execute(tool:\"cat\",
params:[\"/home/kali/CAN_tools/sessionoutput.txt \"])" , "commands":[{"name":"PrintSessionOutput", "tool":"cat",
"parameters":["/home/kali/CAN_tools/sessionoutput.txt"]}]}
],
 "postconditions":[]
}

Stefan Marksteiner | | 19 März 2024 |/ 12Public

Acknowledgement

openDuT

 The present work was made possible by contribution of the Austrian
Federal Ministry of Climate Action, Environment, Energy, Mobility,
Innovation and Technology (BMK), and the Austrian Federal Ministry of
Labour and Economy (BMAW); supported by the Austrian Research
Promotion Agency (FFG) and Austrian Promotional Bank (aws).

 Contribution framework:

IPCEI ME/CT
Important Projects of Common European Interest on
Micro-Electronics and Communication Technologies

Approved by the European Commission to support research,
innovation and initial industrial application in the areas of
Micro-Electronics and Communication Technologies across
the entire value chain.

	OpenDuT – Test Definition Language and Test Execution Architecture
	Test Abstraction and Execution Layers
	Test Reuse on Different Systems
	Abstracting Test Patterns
	Current Execution Architecture
	OpenDuT Execution Architecture
	A DSL for Cyber Security Testing
	Example: UDS Session Scan
	Actions
	Flow Control
	Example Output
	Acknowledgement

