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Test Reuse on Different Systems
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Abstracting Test Patterns

 The purpose is portability through 
generalization

 Test patterns are system-agnostic test 
building blocks that form a scenario [1]

 Scenarios are concretized for specific 
SUTs as test cases (consisting of single 
scripts)

 The test scenarios are stored in an own 
developed attack description domain-
specific language (ALIA) [2]

[2] S. Marksteiner et al., “A Process to Facilitate Automated Automotive Cybersecurity Testing,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC Spring), New York, NY, USA: IEEE, 2021.

[3] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An Agnostic Domain Specific Language for Implementing Attacks in an Automotive Use Case,” in The 16th International Conference on 
Availability, Reliability and Security, in ARES 2021. New York, NY, USA: Association for Computing Machinery, Aug. 2021, pp. 1–9. doi: 10.1145/3465481.3470070.

https://doi.org/10.1145/3465481.3470070
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OpenDuT Execution Architecture
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Example: UDS Session Scan

PreConditions:

Actions:
setIFDOWN : execute(tool: "ip", params:["link", "set", "can0", "down"])

consetIFDownfigureIF: execute(tool:"ip", params:["link", "set", "can0", "type", "can", 
"bitrate", "500000"])

setIFUP: execute(tool:ip", params:["link", "set", "can0", "up"])

UDSSessionScan: execute(tool:"python3", params:["/home/kali/CAN_tools/sessionscan.py", "can0", 
"714", "7EE", "/home/kali/CAN_tools/sessionoutput.txt"])

PrintSessionOutput: execute(tool:"cat", params:["/home/kali/CAN_tools/sessionoutput.txt "])

PostConditons:
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Actions

• Implement the steps of a test that are 
executed sequentially (or in parallel)

• Consist of an identifier and an execute 
function

• Identifiers can be used in later actions 
to reference a previous result

• A function contains specific params 
that are used to parametrize the used 
tool

• A function executes a single tool with 
specified parameters

• Comments with „#“ or „//“
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Flow Control

Conditionals:
 if( <conditon> )

    <action> 
elseif(<conditon>)
    <action>
else
    <action>
endif

Loops:
 while(<condition>)

<action>
 endwhile
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Example Output
• The output of the DSL-Script is parsed to a JSON Object
• This object is sent to the Execution Engine on the Attackbox for execution

{
   "name": „UDSSessionScan.json",
   "preconditions":[],
   "actions":[
   {"identifier":"setIFDown", "result":"setIFDown", "DSLStep":"setIFDown: execute(tool: \"ip\", params:[\"link\", \"set\", 
\"{canIF}\",\"down\"])" , "commands":[{"name":"setIFDown", "tool": "ip", "parameters":["link", "set", "can0", "down"]}]},
 {"identifier":"configureIF", "result":"configureIF", "DSLStep":"configureIF: execute(tool:\"ip", params:[\"link\", \"set\", 
\"can0\", \"type\", \"can\", \"bitrate\", \"500000\"])" , "commands":[{"name":"configureIF", "tool":"ip", "parameters":["link", "set", 
"can0", "type", "can", "bitrate", "500000"]}]},
 {"identifier":"setIFUP", "result":"setIFUP", "DSLStep":"setIFUP: execute(tool:\"ip", params:[\"link\", \"set\", \"can0\", 
\"up\"])" , "commands":[{"name":"setIFUP", "tool":"ip", "parameters":["link", "set", "can0", "up"]}]},
 {"identifier":"UDSSessionScan", "result":"UDSSessionScan", "DSLStep":"UDSSessionScan: execute(tool:\"python3\", 
params:[\"/home/kali/CAN_tools/sessionscan.py\",\"can0\",\"714\",\"7EE\",\"/file.txt\"])" , "commands":[{
   "name":"UDSSessionScan", "tool":"python3"
   , "parameters":["/home/kali/CAN_tools/sessionscan.py", "can0", "714", "7EE", "file.txt"]}]},
   {"identifier":"PrintSessionOutput", "result":"PrintSessionOutput", "DSLStep":"PrintSessionOutput: execute(tool:\"cat\", 
params:[\"/home/kali/CAN_tools/sessionoutput.txt \"])" , "commands":[{"name":"PrintSessionOutput", "tool":"cat", 
"parameters":["/home/kali/CAN_tools/sessionoutput.txt"]}]}
   ],
   "postconditions":[]
}
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